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Abstract

Many of the existing methods for 3D object pose recognition from point clouds have deficits that
make them not ideal for a aviation manufacturing environment. In this work, we propose extensions
to existing methods for 3D object recognition. Our original plan was to create a method we called
Face-Based-Features RANSAC where we create mesh correspondences between points and faces from a
mesh, rather than sampling the face of the mesh and doing point to point correspondences as is typical
of existing methods. We have successfully implemented and tested this algorithm. Fundamental limits
in performance have led us to pursue a new method which utilizes a sparse medial axis representation
and an informed variation of Iterative Closest Point (ICP) to fit arbitrary meshes with a significantly
reduced runtime. So far, this method has been successful in recognizing and fitting our test meshes.
Looking forward, we are excited to improve the performance and robustness to error and occlusions and
believe we are on track to developing a new method that can be used by the community in arbitrary 3D
mesh recognition.

1 Overview

1.0.1 Current State

To this date, we have made substantial progress both in terms of implementing and understanding existing
mesh recognition methods as well as implementing and testing our own novel algorithms. We have developed
a method that uses face-based features and a RANSAC kernel to recognize arbitrary meshes. While this
method can find geometries given sufficient time, our use case for online recognition demands a faster solution.
To address this, we have developed a prototype of a new method which uses medial axis matching and a
variant of Iterative Closest Point (ICP) to determine geometry in a more deterministic amount of time.
Initial results show promise in recognizing meshes from a point cloud. The additional sections provide more
substantial detail about each of the methods explored thus far, including results and technical details. An
updated timeline and our proposed comparison appear at the end of this document.

Appropriately sample 
noisy point cloud data Determine mesh pose

Locate mesh position
via medial axis matching

Find orientation and correct
position via modified ICP

Figure 1: General problem statement to fit an arbitrary mesh to noisy point cloud data. Our method uses
the medial axis as a geometric feature for correspondence and uses a modified version of Iterative Closest
Point (ICP) for orientation and refinement.
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1.0.2 Difficulties

The main difficulty of the project stems from the unknown of pursuing a novel algorithm for mesh pose
recognition. Otherwise, while implementing existing methods for comparison and insight, we have faced
some struggle with missing detail in technical papers as well some instances where formulas were actually
incorrect in published literature. Luckily, we were able to fix problems and develop our own ideas for missing
parts of the algorithms. Our only other issue has been in implementing comparison methods. For our
arbitrary geometric mesh comparison method, we were able to clone a library based on the state of the
art published literature, however, it rarely finds meshes even in simple point cloud scenes. We will further
investigate and possibly contact the authors prior to our final comparison.

1.0.3 Next Steps

Based on the promising results so far, we believe for the final project deadline, we will be able to deliver a
python package for our 3D pose recognition method. So far, most of our testing has been on simulated scenes
and not images taken from real point clouds. We plan to add more robustness to deal with the expected
noise and occlusions that arise from moving to real data, as well as improve scalabiliy and performance as
required for a realistic scene.

2 Details of Progress

2.1 Efficient RANSAC

To explore fitting geometry from point cloud data, we developed a form of Efficient RANSAC to better
understand the limitations and strengths of the method. We have developed a prototype that is capable of
fitting two of the primitive geometries: spheres and cylinders

2.1.1 Implementation Details

We have provided an end-to-end python implementation for a modified version of the Efficient RANSAC
method described in [5]. This is a module that takes in a point cloud and will plot the point cloud using
matplotlib along with all of the identified primitive geometry. Figure 2 shows one example of the results.
In our testing, we used point clouds with 5000 sampled points. RANSAC offers probabalistic guarantees to
determine how likely a particular geometry can be identified based on how many points need to be identified
and what percentage of the overall scene is represented by an object. The probability of selecting the correct
points for a shape parameterized by k points, where the shape consists of n of the total N samples in the
point cloud can be described as:

P (n) = (
n

N
)k (1)

As described in [5], this can be rearranged to determine the number of iterations, T , that are required
to detect shapes with a certain probability, pt:

T ≥ ln(1− pt)
ln(1− P (n)

(2)

Based on the probabilistic model and empirical testing with our models, we set our system to run 1000
iterations. A different set of meshes or different-sized point cloud would require a different choice. For each
iteration, a hypothesis is generated. In order to validate hypotheses, we count inliers and normal-vector
consistency, described in more detail in Section 2.1.2. To decide whether a hypothesis should be accepted,
we apply a threshold for consistent points that is based on the surface area of the candidate shape (i.e., an
approximation for how many sampled points might be in the cloud). Finally, we only keep shapes if there
is not already a shape at approximately the same center point. While the original report removes inliers
to improve subsequent performance (by lowering N), we chose a more simple method that accomplishes the
same result.
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Figure 2: Our implementation of the Efficient RANSAC algorithm successfully identifies spheres and cylin-
ders present in the scene. These results are generated from 1000 iterations. Despite other random objects
in the scene, our scoring algorithm does not incorrectly classify the boxes. Note: the cylinder equation does
not provide bounds for the cylinder length. The bounds are instead estimated from the inliers.

2.1.2 Lessons Learned

By creating a prototype of the efficient RANSAC platform, we were able to develop an intuition for the
strengths and weaknesses of a RANSAC-based method. From our testing, we were able to learn two main
lessons that helped to inform our novel algorithms.

Geometric relationships are often skewed by practical measurement error: The theory of the
primitive recognition is correct (i.e., one can develop relationships to recognize geometric primitives using
simple geometric relationships involving sampled points and their respective normal directions). However, we
find that in practice, often small errors in the positions and particularly in the estimated normal directions
can lead to requiring many sets of samples on the geometry before a reasonable model can be estimated. In
other words, these simple geometric relationships are not robust to practical measurement noise. We present
a case study for the spherical model as an example.

The spherical model is fully defined with two points and two corresponding normal directions. Since the
normals are tangent to the surface of the sphere, the center of the sphere can be recovered by looking at the
intersection of the lines created from the points and their normals. To add a small amount of robustness,
the midpoint of the shortest distance between these lines is taken as the center which still allows the center
to be found in the case when the normals do not properly intersect. The geometric relationship is shown in
Figure 3. These geometric relationships are described by the following:

x1, y1 = arg min
x1,y1

‖(x1n1 + p1)− (x2n2 + p2)‖ (3)

c = ((x1n1 + p1) + (x2n2 + p2))/2 (4)

r = (‖p1 − c‖+ ‖p2 − c‖)/2 (5)
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Figure 3: 2D visualization of how the sphere center point is determined based on two points and their
normals. Red dotted lines show that for a few degrees of error in the normal, the resulting center can
become inaccurate.

To evaluate, we test a point cloud of 1000 points which is sampled from an perfect sphere model (i.e., all
points should be perfectly on the sphere). The normals are estimated from nearest neighbors as is common
for a point cloud approach. When we run 1000 iterations of RANSAC, only 35 percent properly recover
the sphere. This problem is further exacerbated when the two points are close by on the sphere leading to
similar normal directions. To simulate this, we ran an evaluation where we select the second random point
from a small neighborhood of the first point. In this case, the RANSAC only identifies the correct sphere 5
percent of the time. There is a trade off between robustness of pose estimation and likelihood of the sampled
set of points all belonging to the same object. Our takeaway is that to keep the solution tractable, it is often
necessary to limit the combinatorial nature of problems. As such, we require a robust refinement step that
can function in spite of potentially inaccurate poses.

Scoring methods for a candidate shape: In the efficient RANSAC method, three main criteria are
used for scoring: a calculation of consistent points within a small tolerance of the hypothesis mesh face,
the normal of these consistent points compared to the normal of the mesh, and a calculation of the largest
connected component of consistent points. The first two conditions, leading to a consistent set of points Pψ
for a hypothesis ψ, can be summarized as:

Pψ = {p|p ∈ P ∧ d(ψ, p) < ε ∧ arccos(|n(p)n(ψ, p)|) < α} (6)

While we did not use a connected components calculation in our efficient RANSAC algorithm due to a
lack of detail in the original reference, we were inspired to use a similar concept later on in our medial axis
matching algorithm. For scoring in our novel algorithm, we use the idea of mesh inliers (i.e., points close to
the mesh face), but also extend to include the concept of outliers, which we consider as points that would
be within the mesh geometry. The resulting total score that we use to accept or reject a hypothesis pose is
a weighted sum of both inliers and outliers.

2.2 Face-Based Features RANSAC

The first algorithm that we developed uses a RANSAC-type method to try and fit an arbitrary geometry
mesh. While other previous methods have extended RANSAC methods to arbitrary geometry, our key
differentiation was to use face-based correspondences instead of sampling mesh faces and doing point-to-
point correspondences with the point cloud. Additional details about the method, features, and results are
found below.
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Figure 4: 2D Visualization exemplifies how features are computed for two mesh faces. The position of the
two normal vectors exemplifies why a distance bound is needed for points on a face.

2.2.1 Implementation Details

We provide an end-to-end implementation in python. The system takes a PLY mesh and a JSON point
cloud and identifies where the mesh occurs within the scene.

To be able to determine a the pose of a mesh from a face correspondence, we exploit two fundamental
relationships between a set of faces and the pose (origin and rotation) of the mesh. Given ~fi and ~nfi, a
vector from the origin to a point on the face and the face normal in mesh space, along with ~pi and ~ni, a
point on the corresponding face in the scene and the scene normal, the following relations hold:[

~n1|~n2|~n3
]

= R
[
~nf1|~nf2|~nf3

]
(7) ~n1

~n2
~n3

~o =

 ~p1 · ~n1 − ~f1 · ~nf1
~p2 · ~n2 − ~f2 · ~nf2
~p3 · ~n3 − ~f3 · ~nf3

 (8)

These relations allow us to determine the position and orientation of a mesh in the scene, provided we have
corresponded three points with three separate faces on the mesh. This is in contrast to the methodology
common to existing algorithms, which is to first sample points from the mesh and attempt to correspond
points to points. Our method works by trying to match triples of points with triples of faces. This is done
by computing features of both that can be compared. We use a total of 6 features to compute potential face
correspondences. The first three are the inner products of normals. Since each point on the point cloud has
a corresponding normal taken from nearest neighbors, this gives a metric that is agnostic to where a point
lies on a given face. By using the inner product of normals, we functionally get a metric of rotation between
points. Second, we compute a distance metric. In other methods, this would represent the distance between
the sampled mesh points. Since we want to compare between the mesh face and a point in the scene, we
instead compute a distance bound. This is equivalent to finding what sets of three faces could represent these
three points and their positions, given that the points could be anywhere on the face. Naturally, these leads
to fairly conservative bounds, but avoids the issue of sampling the mesh and relying on points on the mesh
face accurately corresponding to points in the scene. Figure 4 provides a visualization for these features for
a set of meshes.

In order to store this information, we leverage an existing implementation of an R-tree which allows us
to structure our mesh features as a 6-dimensional hyper-rectangle. For any given set of three points, we can
then compute the 6 dimensional feature vector, and quickly find all of the mesh features that contain the
point. Then, we evaluate the matches to see whether any yields a pose hypothesis that is consistent with
the point cloud (e.g., scoring algorithm).
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Figure 5: Best identified mesh pose in read after 400, 3000 and 4500 iterations operating on the scene cloud
in blue. This example was taken from a simulated cloud without additional noise. While this algorithm can
find a good pose in the presence of noise, it takes substantially more iterations.

2.2.2 Results and Limitations

We tested our algorithm on a variety of simulated point cloud scenes, some of which included noise. We
focused our testing on locating a simple screw model in a scene with 0-1 other objects. Even in cases of
realistic noise (10% of model scale), the algorithm is successfully able to locate the screw pose.

The main limitation is the performance. Figure 5 demonstrates that our algorithm can identify the screw
model, but often takes many RANSAC iterations to properly find the model, even in a relatively sparse
scene. As a reminder, one of our goals is to locate scene objects quickly to be used in an online interface in
manufacturing environments. While our features represent technically sound relations that help to identify
point-face correspondences, there can still be several thousand face combination matches for given set of
three points. As a result, the performance succumbs to the combinatorial nature of the problem. In other
algorithms, such as Papazov et al. [4], additional constraints are added, such as sampling points from a
known radius, however, we thought such heuristics diverged from our idea of developing a more general
purpose algorithm.

In summary, we were successful in our goal of implementing a face-based-feature variant of RANSAC
for pose estimation, but limited performance has led us to design a different, more promising algorithm
described below.

2.3 Current Algorithm

The most important thing that was learned from implementing a version of Face-Based RANSAC is that the
combinatorial problem of corresponding points to faces is far too inefficient. With this in mind, we decided
to avoid developing scene-model correspondences over large sets of points. As a result, our Medial Axis
Matching algorithm is focused on deriving a very small set (<100) of key points from the scene, as well as a
very small set (<10) of key points from the model.

To achieve this goal, our algorithm leverages the Medial Axis Transform (MAT) of a given mesh. Recently,
there has been evidence that the medial axis of shape plays a role in human shape recognition and cognition[3].
Similarly built upon this intuition, MAT-Net attempts to leverage the medial axis for 3D pose recognition
using a neural network[2]. In contrast to the more popular neural network approaches, ours takes inspiration
from Boluk et. al.[1], where a mesh is reduced to a set of critical points of the medial axis. We iterate on this
idea by applying it to 3D environments, and extend the concept of the MAT to partially observed objects.
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Figure 6: Discretized representation of the medial axis. a) A 2d representation (figure adapated from Boluk
et. al. [1]). b) A discretized medial axis generated from our toy screw model.

2.3.1 Implementation Details

The algorithm consists of several steps. First, a set of hypotheses are generated by corresponding a sparse
form of the medial axis between the mesh and the point cloud. These give candidate positions for the
meshes in the scene. Using modified ICP, the orientation of the mesh is recovered and the overall pose is
refined based on the point cloud. Finally, hypothesizes are validated via a scoring method similar to existing
algorithms. The following sections provide more detail for each step of the method.

Medial Axis Generation: The medial axis of a shape is the set of all points that have more than one
closest point on the shape. The first step of our algorithm is to generate this set for both the reference model
and the scene point cloud. To do this, we draw on the algorithms developed by Siddiqi et al.[6]. We use an
Octree as our dynamic spatial resolution primitive, where we choose to expand node of the tree if we think
it may contain a segment of the medial axis. This is determined by first computing the local distance field
(i.e., the minimum distance to the mesh/point cloud), and looking at the net flux of the gradient through
that Octree node. Siddiqi et al. shows that points on the medial axis manifest a negative flux (a source
of the vector field). Similarly, it can be shown that an Octree node contains a medial axis point only if it
contains a point on the surface of the mesh/point cloud, or it has a negative net flux itself. This allows us
to discretely resolve the medial axis to arbitrary precision.

Critical Point Detection: At first glance, identifying a distcretized medial axis has merely transformed
the problem from matching two point clouds sampled from the surface to matching two point clouds sampled
from the interior. However, there is a key difference: we are now able to shrink the point clouds appropriately
down to a handful of keypoints. This is done via a novel, three-part erosion scheme. The first step is to
transform the point cloud into a set of connected graphs by connecting all adjacent points. This forms the
basis of a noisy medial axis graph. The second step is to remove the outliers and noise, by successively
removing all nodes of the graph that have fewer than 8 neighbors. Then, the last step is to filter each
component based on size, and continue removing the least connected nodes until there is only one of each
component remaining. These remaining points are classified as ”key points”. For the purpose of key point
correspondence, we do the same procedure to the mesh we are searching for. Finally, we can find potential
scene-model correspondences by matching the key points based on their distance to the surface. This typically
results in several hypothesis model positions in the scene.

Iterative Closest Point: Once we have identified a set of hypothesis positions, we need to find the
optimal orientation and correct any error in the position of the hypothesis mesh. To do so, we developed an
implementation of the Iterative Closest Point (ICP) algorithm, which allows us to both refine the positions
and estimate the optimal orientation. The basic ICP algorithm works by computing the minimum distance
between a point in the scene with each point on the mesh. From these sets of corresponding points, an

7



Figure 7: Example of pruning the graph points of a medial axis. At each step, the least connected nodes are
eroded away until there is small graph that represents highly connected components.

optimal rotation and translation can be determined using least squares (e.g., SVD). This process is performed
iteratively until convergence or a max number of iterations. There are a few design choices in implementing
the algorithm. The first is the maximum distance to consider for potential match points. We determine
this based on the radius of the mesh. Second, the points can be given individual weights as part of the
least squares. We have experimented with distance-based weighting as well as weighting based on the angle
between normal vectors as seen in Equations 9-10.

wi = 1− |di|
dmax

(9)

wi = |nclosest,i · nmesh,i| (10)

where di is the closest distance for an individual mesh face point, dmax is the max distance considered
for ICP, and nclosest and nmesh are the normals for the closest point cloud point and mesh respectively.
Empirically in our testing so far, we note similar results regardless of the weighting function.

The ICP algorithm is typically used to refine an initial pose estimate (i.e., position and orientation). In
our algorithm, the medial axis matching does not give an estimate of orientation. As the ICP algorithm is
sensitive to local minima in the least squares fitting, we added orientation random-restarts to help converge
on the proper pose.

Looking forward, there are still two main areas to improve with respect to the ICP algorithm. The first
is to add robustness with respect to occlusions. We believe that proper restarts and exploration of the search
space can help to improve issues. Additionally, currently the points that are used from the mesh represent
the center of each of the faces, which does not necessarily align with the points on the point cloud. To
make these point correspondences more compatible with our face-based correspondence mentality, we are
interested in exploring weighting functions that account for the bound of faces (as described earlier).

Hypothesis Validation: Finally, once we have a set of refined pose hypotheses, we merely need to accept
or reject them. To note here, because of the way we generated key points, there are very few hypotheses
that intersect with each other. Our working assumption thus far has been that a hypothesis that fits the
surrounding cloud well will not have any other conflicting hypotheses. As a result, the validation stage is
a straightforward procedure inspired by our RANSAC beginnings: we simply count the number of ”inliers”
(points that lie on the surface of the proposed model instance) and ”outliers” (points that lie within the
proposed model instance) and accept or reject based on a binary thresholding of those values.

2.3.2 Results

We have completed some preliminary testing of our algorithm. So far, we have only focused on recognizing
the screw model as one prototypical example that fits within our use case. In simple situations, the algorithm
can successfully identify the screw. Some examples of the recognition are provided in Figure 8. As per our
original plan, we are still working on iterating and making our algorithm more robust. Specifically, we plan
to start testing additional meshes and occluded scenes promptly. The sample results indicate that the ICP
rotation can still fail in certain cases and recognition in noisy occluded scenes can make it difficult to precisely
locate the mesh.
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Figure 8: Example early results from the medial axis algorithm. Left: the algorithm correctly finds a screw
next to a model glove. Middle: the algorithm correctly identifies the pose of 2 screws. The third gets caught
in a local minimum. Right: a real point cloud is evaluated. The screw is located and correctly rotated, but
still has some error due to occlusion and noise (Note: validation is turned off in this example which is why
other false-positives appear).

3 Proposed Evaluation and Timeline

3.1 Timeline

To evaluate our final method, we propose to provide evidence that it can identify arbitrary meshes (e.g.,
10 different meshes) in a variety of generated and real point cloud scenes. We will report both successes
and limitations in order to properly identify where this method can be helpful for other uses. We will also
provide a comparison to three methods: our implementation of efficient RANSAC, an existing RANSAC-
based arbitrary mesh recognition, and a neural net approach: PointNet++.

3.1.1 Efficient RANSAC

We will run regression testing for a variety of perfect and noise-injected scenes to see how often efficient
ransac and our medial axis method can identify random combinations and poses of spheres and cylinders
within the scene.

3.1.2 ObjRecRANSAC

ObjRecRANSAC is an implementation of the geometry-based arbitrary mesh recognition method proposed
in Papazov er al. [4]. Since our intention is to use our algorithm for a manufacturing environment, we will
compare 10 test manufacturing scenes as well as one actual point cloud (we can’t get anymore now that we
are locked out of the building). Each scene will have some sort of standard industrial element (e.g., screw,
bolt, tool) in it and we will directly compare the performance (i.e., runtime) and a confusion matrix of the
results of each method.

3.1.3 PointNet++

We also desire to compare to a neural net approach. To avoid retraining, we will use our method for
comparing 5 of the objects that the neural net can recognize. Similar to above, we will report performance
results as well as a confusion matrix of accuracy for each method.

3.2 Timeline

Figure 9 shows our original project proposal timeline for reference. We have successfully implemented our
version of Efficient RANSAC and our version of FBF-RANSAC as desired by the midterm report. In addition
to the original plan, we have also developed our new Medial-Axis based method which we will use for final
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Precompiler/Geometric Features Development

Testing and Iteration
Implement Comparison Methods and Evaluation Mid-term

 report

Figure 9: Original project timeline.

comparison. We are on track to deliver our final method with 3 comparisons to existing methods by the
project due date.
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